Cross-Calibration of optics data for Project SWARM

The three gliders from Project SWARM carried Wet-labs optics pucks during the experiment. UAF-507 carried FLBBCD-3948, factory calibrated in November 2014. UD-476 carried FLBB-5499, factory calibrated in February 2019. RU-32 carried FLBBCDSLC-4653, factory calibrated October 2018. The optics puck on UD-476 measured chlorophyll (ug / l) and backscattering at $700 \mathrm{~nm}\left(1 /\left(\mathrm{m}^{*} \mathrm{sr}\right)\right)$, while the pucks on UAF-507 and RU32 measured color dissolved organic matter (cdom (ppb.)) in addition to chlorophyll and backscatter. Since UD-476 did not measure cdom, cdom observations were not compared between any of the gliders.

Since FLBB-5499 on UD-476 had the most recent calibration date, it was used as the cross-calibration standard for the other two gliders. However, UD-476 was not the stationary glider, like UD-134 was in Project CONVERGE, which made comparisons with the other transiting glider (UAF-507) challenging. No profiles between UD-476 and UAF-507 were within less than 1900 m of each other. Therefore, UD-476 was compared to RU-32, and the corrected RU-32 data were used in the correction of UAF-507. In addition, RU-32 and UAF507 were deep (1000 m) gliders, which resulted in greater distances and times between profiles. For all comparisons, glider up-casts were compared when two profiles were within 300 m of each other. The profiles compared in this analysis ranged from 77 to 265 m apart. Also, profiles were between 3 and 60 minutes of each other. The compared profiles occurred throughout the experiment. Data were binned in either 1 or 5 m bins and the median of each depth bin was used in the model regressions.

UD-476:RU-32 comparison: Seven profiles were compared. Temperature and conductivity showed strong similarity. RU-32 consistently observed slightly lower temperature and conductivity in the surface (above $\sim 100 \mathrm{~m}$) and slightly higher temperatures and conductivity at depth. There were significant differences between surface chlorophyll and scattering profiles. Model II regressions (Major axis regression) with data in 1 m bins showed that temperature and conductivity were very close to the $1: 1$ line. Chlorophyll and backscatter all appeared to be overestimated by RU-32. Profiles corrected with the regression coefficients were in line with UD-476 profiles.
$R U_{\text {cor. chl }}=\left(R U_{\text {cal. chl }}+0.049\right) / 1.26$
$R U_{\text {bb700 }}=\left(R U_{\text {cal. bb700 }}-0\right) / 1.207$

RU-32:UAF-507 comparison: Five profiles were compared. Temperature and conductivity profiles showed strong similarity. UAF-507 observed slightly lower temperature and conductivity than RU-32, especially above 150 m . UAF-507 also measured higher surface chlorophyll and overall higher backscatter than RU-32, after RU-32 was corrected using the above equations from the UD-476:RU-32 comparison. Model II regressions (Major axis regression) with data in 5 m bins showed that temperature and conductivity were very similar to the 1:1 line. Chlorophyll was slightly overestimated and backscatter was very overestimated by UAF-507. Profiles corrected with the regression coefficients were in line with UD-476 profiles.

$$
\begin{aligned}
& \mathrm{UAF}_{\text {cor. chl }}=\left(\mathrm{UAF}_{\mathrm{chl}}-0.006\right) / 1.046 \\
& \mathrm{UAF}_{\text {cor. bb700 }}=\left(\mathrm{UAF}_{\mathrm{bb} 700}+0 .\right) / 0.988
\end{aligned}
$$

Pierre Legendre (2013). lmodel2: Model II Regression. R package version 1.7-1. http://CRAN.Rproject.org/package=lmodel2

Temperature
Profile Date 2020-01-17

Conductivity Min. between profiles 22

Chlorophyll
Meters between profiles 265

BB

Temperature
Profile Date 2020-02-05

Conductivity Min. between profiles 17

Chlorophyll
BB

Temperature
Profile Date 2020-02-05

Conductivity
Min. between profiles 1

Chlorophyll
Meters between profiles 213

BB

Temperature
Profile Date 2020-02-05

Conductivity Min. between profiles 35

Chlorophyll
Meters between profiles 153

BB

Temperature
Profile Date 2020-02-05

Conductivity
Min. between profiles 3

Chlorophyll
BB

Temperature
Profile Date 2020-02-06

Conductivity
Min. between profiles 5

Chlorophyll
BB

Temperature
Profile Date 2020-02-08

Conductivity
Min. between profiles 8

Chlorophyll
BB

Temperature
Profile Date 2020-01-17

Conductivity Min. between profiles 22

Chlorophyll
Meters between profiles 265

BB

Temperature
Profile Date 2020-02-05

Conductivity Min. between profiles 17

Chlorophyll
BB

Temperature
Profile Date 2020-02-05

Conductivity
Min. between profiles 1

Chlorophyll
Meters between profiles 213

BB

Temperature
Profile Date 2020-02-05

Conductivity Min. between profiles 35

Chlorophyll
Meters between profiles 153

BB

Temperature
Profile Date 2020-02-05

Conductivity
Min. between profiles 3

Chlorophyll
BB

Temperature
Profile Date 2020-02-06

Conductivity
Min. between profiles 5

Chlorophyll
Meters between profiles 256

BB

Temperature
Profile Date 2020-02-08

Conductivity
Min. between profiles 8

Chlorophyll Meters between profiles 77

BB

Temperature
Profile Date 2020-02-12

Conductivity Min. between profiles 36

Chlorophyll
Meters between profiles 232

BB

Temperature
Profile Date 2020-02-12

Conductivity Min. between profiles 60

Chlorophyll
Meters between profiles 154

BB

Temperature
Profile Date 2020-02-12

Conductivity Min. between profiles 29

Chlorophyll
Meters between profiles 240

BB

Temperature
Profile Date 2020-02-16

Conductivity
Min. between profiles 27

Chlorophyll
Meters between profiles 233

BB

Temperature
Profile Date 2020-02-16

Conductivity
Min. between profiles 37

Chlorophyll

Temperature
Profile Date 2020-02-12

Conductivity
Min. between profiles 36

Chlorophyll
Meters between profiles 232

BB

Temperature
Profile Date 2020-02-12

Conductivity Min. between profiles 60

Chlorophyll
Meters between profiles 154

BB

Temperature
Profile Date 2020-02-12

Conductivity
Min. between profiles 29

Chlorophyll
Meters between profiles 240

BB

Temperature
Profile Date 2020-02-16

Conductivity
Min. between profiles 27

Chlorophyll
Meters between profiles 233

BB

Temperature
Profile Date 2020-02-16

Conductivity
Min. between profiles 37

Chlorophyll
Meters between profiles 190

BB

